Automate Weekly Email Reports with Python: Save 5 Hours Every Week
Every Friday at 4 PM, you face the same dreaded task: compiling the weekly report. You pull data from three different systems, paste it into Excel, create charts, write the summary, and email it to 12 stakeholders. Two hours vanishβtime you could spend on actual strategic work.
What if that entire process ran automatically while you were in your Friday afternoon meeting? I'll show you how to build a Python script that generates and emails professional weekly reports with zero manual intervention.
What You'll Build
By the end of this tutorial, you'll have a Python script that:
- Pulls data from CSV files, databases, or APIs automatically
- Calculates key metrics and trends
- Generates professional charts and visualizations
- Formats everything into a clean HTML email
- Sends the report to your distribution list
- Runs automatically every Friday at 3 PM
Time investment: 2 hours to build Time saved: 2+ hours every single week (100+ hours per year)
Prerequisites
You'll need:
- Python 3.8 or higher installed
- Basic Python knowledge (variables, functions, loops)
- Access to your company's email server or Gmail account
- Sample data to work with (I'll provide examples)
Required libraries:
1pip install pandas matplotlib smtplib email2pip install schedule # for automation3pip install openpyxl # if reading Excel files
The Problem: Manual Reporting is a Time Drain
Let's break down where time goes in manual reporting:
- Data collection (30 minutes): Log into multiple systems, export CSVs, copy data
- Data cleaning (20 minutes): Fix formatting issues, handle missing values, merge sources
- Analysis (25 minutes): Calculate metrics, create pivot tables, identify trends
- Visualization (20 minutes): Build charts, format them consistently
- Formatting (15 minutes): Paste into email template, add commentary
- Distribution (10 minutes): Send to stakeholders, handle bounces
Total: 2 hours β and that's if nothing goes wrong.
Solution Architecture
Here's our automated approach:
βββββββββββββββββββ
β Data Sources β (CSV, Database, API)
ββββββββββ¬βββββββββ
β
βΌ
βββββββββββββββββββ
β Data Processing β (pandas)
ββββββββββ¬βββββββββ
β
βΌ
βββββββββββββββββββ
β Visualization β (matplotlib)
ββββββββββ¬βββββββββ
β
βΌ
βββββββββββββββββββ
β HTML Formatting β (email.mime)
ββββββββββ¬βββββββββ
β
βΌ
βββββββββββββββββββ
β Email Sending β (smtplib)
ββββββββββ¬βββββββββ
β
βΌ
βββββββββββββββββββ
β Automation β (schedule/cron)
βββββββββββββββββββLet's build this step by step.
Step 1: Set Up Project Structure
Create a clean project structure:
1mkdir weekly-report-automation2cd weekly-report-automation34# Create folder structure5mkdir data6mkdir reports7mkdir charts89# Create Python files10touch report_generator.py11touch email_sender.py12touch config.py13touch main.py
File purposes:
report_generator.py: Data processing and analysis logicemail_sender.py: Email formatting and sendingconfig.py: Configuration settings (email, data sources)main.py: Orchestrates the entire workflow
Step 2: Configure Email Settings
Create config.py:
1# config.py2import os3from datetime import datetime45# Email configuration6EMAIL_CONFIG = {7 'smtp_server': 'smtp.gmail.com', # or your company's SMTP server8 'smtp_port': 587,9 'sender_email': 'your-email@company.com',10 'sender_password': os.getenv('EMAIL_PASSWORD'), # Store securely!11 'recipients': [12 'manager@company.com',13 'team@company.com',14 'stakeholder@company.com'15 ]16}1718# Report configuration19REPORT_CONFIG = {20 'report_title': 'Weekly Sales Performance Report',21 'data_source': './data/sales_data.csv',22 'output_folder': './reports',23 'chart_folder': './charts'24}2526# Metrics to track27METRICS = {28 'revenue': 'Total Revenue',29 'units_sold': 'Units Sold',30 'avg_order_value': 'Average Order Value',31 'conversion_rate': 'Conversion Rate'32}3334# Get current week info35def get_week_info():36 today = datetime.now()37 week_number = today.isocalendar()[1]38 year = today.year39 return f"Week {week_number}, {year}"
Security note: Never hardcode passwords. Use environment variables:
1# On Mac/Linux2export EMAIL_PASSWORD="your-app-specific-password"34# On Windows5set EMAIL_PASSWORD=your-app-specific-password
For Gmail, create an App Password instead of using your regular password.
Step 3: Build Data Processing Module
Create report_generator.py:
1# report_generator.py2import pandas as pd3import matplotlib.pyplot as plt4from datetime import datetime, timedelta5import os67class WeeklyReportGenerator:8 def __init__(self, data_source, output_folder='./reports', chart_folder='./charts'):9 self.data_source = data_source10 self.output_folder = output_folder11 self.chart_folder = chart_folder12 self.df = None13 self.metrics = {}1415 def load_data(self):16 """Load data from CSV, Excel, or database"""17 try:18 if self.data_source.endswith('.csv'):19 self.df = pd.read_csv(self.data_source)20 elif self.data_source.endswith('.xlsx'):21 self.df = pd.read_excel(self.data_source)22 else:23 raise ValueError("Unsupported file format")2425 # Convert date column to datetime26 self.df['date'] = pd.to_datetime(self.df['date'])27 print(f"β Loaded {len(self.df)} records")28 return True29 except Exception as e:30 print(f"β Error loading data: {e}")31 return False3233 def filter_last_week(self):34 """Filter data for the last 7 days"""35 today = datetime.now()36 week_ago = today - timedelta(days=7)3738 self.df = self.df[self.df['date'] >= week_ago]39 print(f"β Filtered to last 7 days: {len(self.df)} records")4041 def calculate_metrics(self):42 """Calculate key performance metrics"""43 # Current week metrics44 current_revenue = self.df['revenue'].sum()45 current_units = self.df['units_sold'].sum()46 current_orders = len(self.df)4748 # Calculate averages49 avg_order_value = current_revenue / current_orders if current_orders > 0 else 05051 # Store metrics52 self.metrics = {53 'revenue': current_revenue,54 'units_sold': current_units,55 'total_orders': current_orders,56 'avg_order_value': avg_order_value57 }5859 # Calculate week-over-week growth (if previous week data exists)60 self.calculate_growth()6162 print("β Calculated metrics:")63 for key, value in self.metrics.items():64 print(f" {key}: {value}")6566 return self.metrics6768 def calculate_growth(self):69 """Calculate week-over-week growth rates"""70 # This is simplified - in reality, you'd compare to previous week's data71 # For demo purposes, we'll generate random growth rates72 import random7374 self.metrics['revenue_growth'] = random.uniform(-10, 15)75 self.metrics['units_growth'] = random.uniform(-5, 20)76 self.metrics['aov_growth'] = random.uniform(-8, 12)7778 def generate_charts(self):79 """Create visualization charts"""80 chart_paths = {}8182 # Chart 1: Daily revenue trend83 chart_paths['revenue_trend'] = self._create_revenue_trend_chart()8485 # Chart 2: Product category breakdown86 chart_paths['category_breakdown'] = self._create_category_chart()8788 # Chart 3: Day of week performance89 chart_paths['day_performance'] = self._create_day_of_week_chart()9091 print("β Generated all charts")92 return chart_paths9394 def _create_revenue_trend_chart(self):95 """Create daily revenue trend line chart"""96 daily_revenue = self.df.groupby(self.df['date'].dt.date)['revenue'].sum()9798 plt.figure(figsize=(10, 5))99 plt.plot(daily_revenue.index, daily_revenue.values, marker='o', linewidth=2, markersize=8)100 plt.title('Daily Revenue Trend - Last 7 Days', fontsize=14, fontweight='bold')101 plt.xlabel('Date', fontsize=12)102 plt.ylabel('Revenue ($)', fontsize=12)103 plt.grid(True, alpha=0.3)104 plt.xticks(rotation=45)105 plt.tight_layout()106107 chart_path = os.path.join(self.chart_folder, 'revenue_trend.png')108 plt.savefig(chart_path, dpi=150, bbox_inches='tight')109 plt.close()110111 return chart_path112113 def _create_category_chart(self):114 """Create product category breakdown pie chart"""115 if 'category' not in self.df.columns:116 return None117118 category_revenue = self.df.groupby('category')['revenue'].sum().sort_values(ascending=False)119120 plt.figure(figsize=(8, 8))121 colors = ['#FF6B6B', '#4ECDC4', '#45B7D1', '#FFA07A', '#98D8C8']122 plt.pie(category_revenue.values, labels=category_revenue.index, autopct='%1.1f%%',123 startangle=90, colors=colors[:len(category_revenue)])124 plt.title('Revenue by Product Category', fontsize=14, fontweight='bold')125 plt.axis('equal')126127 chart_path = os.path.join(self.chart_folder, 'category_breakdown.png')128 plt.savefig(chart_path, dpi=150, bbox_inches='tight')129 plt.close()130131 return chart_path132133 def _create_day_of_week_chart(self):134 """Create day of week performance bar chart"""135 self.df['day_of_week'] = self.df['date'].dt.day_name()136 day_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']137138 day_revenue = self.df.groupby('day_of_week')['revenue'].sum().reindex(day_order, fill_value=0)139140 plt.figure(figsize=(10, 6))141 bars = plt.bar(day_revenue.index, day_revenue.values, color='#4ECDC4', edgecolor='black', linewidth=1.2)142 plt.title('Revenue by Day of Week', fontsize=14, fontweight='bold')143 plt.xlabel('Day', fontsize=12)144 plt.ylabel('Revenue ($)', fontsize=12)145 plt.xticks(rotation=45)146 plt.grid(axis='y', alpha=0.3)147148 # Add value labels on bars149 for bar in bars:150 height = bar.get_height()151 plt.text(bar.get_x() + bar.get_width()/2., height,152 f'${height:,.0f}',153 ha='center', va='bottom', fontsize=10)154155 plt.tight_layout()156157 chart_path = os.path.join(self.chart_folder, 'day_performance.png')158 plt.savefig(chart_path, dpi=150, bbox_inches='tight')159 plt.close()160161 return chart_path162163 def generate_report(self):164 """Main method to generate complete report"""165 print("\n=== Starting Weekly Report Generation ===\n")166167 # Load and process data168 if not self.load_data():169 return None170171 self.filter_last_week()172 metrics = self.calculate_metrics()173 chart_paths = self.generate_charts()174175 print("\n=== Report Generation Complete ===\n")176177 return {178 'metrics': metrics,179 'charts': chart_paths,180 'generated_at': datetime.now().strftime('%Y-%m-%d %H:%M:%S')181 }
Step 4: Build Email Sender Module
Create email_sender.py:
1# email_sender.py2import smtplib3from email.mime.multipart import MIMEMultipart4from email.mime.text import MIMEText5from email.mime.image import MIMEImage6from datetime import datetime7import os89class EmailReportSender:10 def __init__(self, config):11 self.smtp_server = config['smtp_server']12 self.smtp_port = config['smtp_port']13 self.sender_email = config['sender_email']14 self.sender_password = config['sender_password']15 self.recipients = config['recipients']1617 def create_html_email(self, report_data, week_info):18 """Generate professional HTML email with embedded charts"""19 metrics = report_data['metrics']2021 # Format currency and percentages22 def format_currency(value):23 return f"${value:,.2f}"2425 def format_percent(value):26 sign = "+" if value >= 0 else ""27 color = "green" if value >= 0 else "red"28 return f'<span style="color: {color};">{sign}{value:.1f}%</span>'2930 # Build HTML email31 html = f"""32 <html>33 <head>34 <style>35 body {{36 font-family: Arial, sans-serif;37 line-height: 1.6;38 color: #333;39 max-width: 800px;40 margin: 0 auto;41 padding: 20px;42 }}43 .header {{44 background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);45 color: white;46 padding: 30px;47 border-radius: 10px;48 margin-bottom: 30px;49 }}50 .header h1 {{51 margin: 0;52 font-size: 28px;53 }}54 .header p {{55 margin: 10px 0 0 0;56 opacity: 0.9;57 }}58 .metrics-grid {{59 display: grid;60 grid-template-columns: repeat(2, 1fr);61 gap: 20px;62 margin-bottom: 30px;63 }}64 .metric-card {{65 background: #f8f9fa;66 border-left: 4px solid #667eea;67 padding: 20px;68 border-radius: 5px;69 }}70 .metric-card h3 {{71 margin: 0 0 10px 0;72 color: #667eea;73 font-size: 14px;74 text-transform: uppercase;75 }}76 .metric-value {{77 font-size: 32px;78 font-weight: bold;79 color: #333;80 margin: 10px 0;81 }}82 .metric-growth {{83 font-size: 14px;84 }}85 .chart-section {{86 margin: 30px 0;87 }}88 .chart-section h2 {{89 color: #667eea;90 border-bottom: 2px solid #667eea;91 padding-bottom: 10px;92 margin-bottom: 20px;93 }}94 .chart-section img {{95 max-width: 100%;96 height: auto;97 border-radius: 5px;98 box-shadow: 0 2px 8px rgba(0,0,0,0.1);99 }}100 .footer {{101 margin-top: 40px;102 padding-top: 20px;103 border-top: 1px solid #ddd;104 text-align: center;105 color: #666;106 font-size: 12px;107 }}108 </style>109 </head>110 <body>111 <div class="header">112 <h1>π Weekly Sales Performance Report</h1>113 <p>{week_info} | Generated {report_data['generated_at']}</p>114 </div>115116 <div class="metrics-grid">117 <div class="metric-card">118 <h3>Total Revenue</h3>119 <div class="metric-value">{format_currency(metrics['revenue'])}</div>120 <div class="metric-growth">vs last week: {format_percent(metrics.get('revenue_growth', 0))}</div>121 </div>122123 <div class="metric-card">124 <h3>Units Sold</h3>125 <div class="metric-value">{metrics['units_sold']:,}</div>126 <div class="metric-growth">vs last week: {format_percent(metrics.get('units_growth', 0))}</div>127 </div>128129 <div class="metric-card">130 <h3>Total Orders</h3>131 <div class="metric-value">{metrics['total_orders']:,}</div>132 <div class="metric-growth">Average: {metrics['total_orders']/7:.1f} per day</div>133 </div>134135 <div class="metric-card">136 <h3>Avg Order Value</h3>137 <div class="metric-value">{format_currency(metrics['avg_order_value'])}</div>138 <div class="metric-growth">vs last week: {format_percent(metrics.get('aov_growth', 0))}</div>139 </div>140 </div>141142 <div class="chart-section">143 <h2>π Revenue Trend Analysis</h2>144 <img src="cid:revenue_trend" alt="Revenue Trend">145 </div>146147 <div class="chart-section">148 <h2>π― Category Performance</h2>149 <img src="cid:category_breakdown" alt="Category Breakdown">150 </div>151152 <div class="chart-section">153 <h2>π Day of Week Analysis</h2>154 <img src="cid:day_performance" alt="Day Performance">155 </div>156157 <div class="footer">158 <p>This is an automated report generated by Python. Questions? Contact data@company.com</p>159 <p>Unsubscribe from these reports: <a href="mailto:data@company.com">Email us</a></p>160 </div>161 </body>162 </html>163 """164165 return html166167 def send_report(self, report_data, week_info):168 """Send the email report with embedded charts"""169 try:170 # Create message171 msg = MIMEMultipart('related')172 msg['Subject'] = f"π Weekly Sales Report - {week_info}"173 msg['From'] = self.sender_email174 msg['To'] = ', '.join(self.recipients)175176 # Attach HTML body177 html_content = self.create_html_email(report_data, week_info)178 msg.attach(MIMEText(html_content, 'html'))179180 # Attach charts as inline images181 for chart_name, chart_path in report_data['charts'].items():182 if chart_path and os.path.exists(chart_path):183 with open(chart_path, 'rb') as img_file:184 img = MIMEImage(img_file.read())185 img.add_header('Content-ID', f'<{chart_name}>')186 msg.attach(img)187188 # Connect and send189 print(f"Connecting to {self.smtp_server}:{self.smtp_port}...")190 with smtplib.SMTP(self.smtp_server, self.smtp_port) as server:191 server.starttls()192 server.login(self.sender_email, self.sender_password)193 server.send_message(msg)194195 print(f"β Report sent successfully to {len(self.recipients)} recipients")196 return True197198 except Exception as e:199 print(f"β Error sending email: {e}")200 return False
Step 5: Create Main Orchestration Script
Create main.py:
1# main.py2import os3from report_generator import WeeklyReportGenerator4from email_sender import EmailReportSender5from config import EMAIL_CONFIG, REPORT_CONFIG, get_week_info67def create_folders():8 """Ensure output folders exist"""9 os.makedirs(REPORT_CONFIG['output_folder'], exist_ok=True)10 os.makedirs(REPORT_CONFIG['chart_folder'], exist_ok=True)1112def generate_and_send_report():13 """Main function to generate and send weekly report"""14 print("\n" + "="*60)15 print("WEEKLY REPORT AUTOMATION - STARTING")16 print("="*60 + "\n")1718 # Create necessary folders19 create_folders()2021 # Generate report22 generator = WeeklyReportGenerator(23 data_source=REPORT_CONFIG['data_source'],24 output_folder=REPORT_CONFIG['output_folder'],25 chart_folder=REPORT_CONFIG['chart_folder']26 )2728 report_data = generator.generate_report()2930 if not report_data:31 print("β Failed to generate report")32 return False3334 # Send email35 week_info = get_week_info()36 email_sender = EmailReportSender(EMAIL_CONFIG)3738 success = email_sender.send_report(report_data, week_info)3940 if success:41 print("\n" + "="*60)42 print("β WEEKLY REPORT SENT SUCCESSFULLY")43 print("="*60 + "\n")4445 return success4647if __name__ == "__main__":48 generate_and_send_report()
Step 6: Create Sample Data
For testing, create a sample CSV file:
1# generate_sample_data.py2import pandas as pd3import random4from datetime import datetime, timedelta56# Generate sample sales data7dates = []8revenues = []9units = []10categories = []1112categories_list = ['Electronics', 'Clothing', 'Home & Garden', 'Sports', 'Books']1314for i in range(50):15 date = datetime.now() - timedelta(days=random.randint(0, 7))16 dates.append(date)17 revenues.append(round(random.uniform(50, 500), 2))18 units.append(random.randint(1, 10))19 categories.append(random.choice(categories_list))2021df = pd.DataFrame({22 'date': dates,23 'revenue': revenues,24 'units_sold': units,25 'category': categories26})2728df.to_csv('./data/sales_data.csv', index=False)29print("β Sample data generated: ./data/sales_data.csv")
Run this once:
1python generate_sample_data.py
Step 7: Test Your Report
Run the complete workflow:
1python main.py
You should see output like:
============================================================ WEEKLY REPORT AUTOMATION - STARTING ============================================================ === Starting Weekly Report Generation === β Loaded 50 records β Filtered to last 7 days: 47 records β Calculated metrics: revenue: 12458.32 units_sold: 284 total_orders: 47 avg_order_value: 265.07 β Generated all charts === Report Generation Complete === Connecting to smtp.gmail.com:587... β Report sent successfully to 3 recipients ============================================================ β WEEKLY REPORT SENT SUCCESSFULLY ============================================================
Step 8: Automate with Scheduling
Now make it run automatically every Friday at 3 PM.
Option 1: Using Python schedule library (simple, but requires script to run continuously)
Create scheduler.py:
1# scheduler.py2import schedule3import time4from main import generate_and_send_report56# Schedule job for every Friday at 3 PM7schedule.every().friday.at("15:00").do(generate_and_send_report)89print("π Report scheduler started")10print("Next run: Every Friday at 3:00 PM")11print("Press Ctrl+C to stop\n")1213while True:14 schedule.run_pending()15 time.sleep(60) # Check every minute
Run it:
1python scheduler.py
Option 2: Using Cron (Mac/Linux) (better for production)
1# Edit crontab2crontab -e34# Add this line (runs every Friday at 3 PM)50 15 * * 5 cd /path/to/weekly-report-automation && /usr/bin/python3 main.py
Option 3: Using Windows Task Scheduler (Windows)
- Open Task Scheduler
- Create Basic Task
- Trigger: Weekly, Friday, 3:00 PM
- Action: Start Program β Python path β main.py
Advanced Enhancements
Enhancement 1: Pull Data from Database
Replace CSV loading with database queries:
1# In report_generator.py2import psycopg2 # for PostgreSQL3import pymysql # for MySQL45def load_data_from_database(self):6 """Load data from PostgreSQL database"""7 conn = psycopg2.connect(8 host="your-db-host",9 database="sales_db",10 user="your-username",11 password=os.getenv('DB_PASSWORD')12 )1314 query = """15 SELECT16 order_date as date,17 SUM(total_amount) as revenue,18 SUM(quantity) as units_sold,19 product_category as category20 FROM orders21 WHERE order_date >= CURRENT_DATE - INTERVAL '7 days'22 GROUP BY order_date, product_category23 """2425 self.df = pd.read_sql(query, conn)26 conn.close()
Enhancement 2: Send to Slack Instead of Email
1# slack_sender.py2import requests34def send_to_slack(webhook_url, report_data, week_info):5 """Send report summary to Slack"""6 metrics = report_data['metrics']78 message = {9 "blocks": [10 {11 "type": "header",12 "text": {13 "type": "plain_text",14 "text": f"π Weekly Report - {week_info}"15 }16 },17 {18 "type": "section",19 "fields": [20 {"type": "mrkdwn", "text": f"*Revenue:*\n${metrics['revenue']:,.2f}"},21 {"type": "mrkdwn", "text": f"*Units Sold:*\n{metrics['units_sold']:,}"},22 {"type": "mrkdwn", "text": f"*Orders:*\n{metrics['total_orders']:,}"},23 {"type": "mrkdwn", "text": f"*Avg Order:*\n${metrics['avg_order_value']:.2f}"}24 ]25 }26 ]27 }2829 response = requests.post(webhook_url, json=message)30 return response.status_code == 200
Enhancement 3: Add Error Notifications
1# In main.py, wrap in try-except2def generate_and_send_report():3 try:4 # ... existing code ...5 return success6 except Exception as e:7 # Send error notification8 send_error_alert(f"Report generation failed: {str(e)}")9 return False1011def send_error_alert(error_message):12 """Send error notification via email"""13 import smtplib14 from email.mime.text import MIMEText1516 msg = MIMEText(f"Weekly report automation failed:\n\n{error_message}")17 msg['Subject'] = "π¨ Weekly Report Generation Failed"18 msg['From'] = EMAIL_CONFIG['sender_email']19 msg['To'] = "admin@company.com"2021 # Send notification...
Troubleshooting Common Issues
Issue 1: SMTP Authentication Failed
- For Gmail: Enable "Less secure app access" or use App Password
- For Office 365: Use port 587 with STARTTLS
- Check firewall isn't blocking SMTP ports
Issue 2: Charts Not Displaying in Email
- Ensure Content-ID matches the image src (e.g.,
cid:revenue_trend) - Use
MIMEMultipart('related')notMIMEMultipart('alternative') - Check image files exist before attaching
Issue 3: Data Processing Errors
- Add data validation: Check for missing dates, negative values
- Handle edge cases: What if no data for the week?
- Add logging to identify where failures occur
Issue 4: Scheduler Not Running
- For
schedulelibrary: Process must stay running - For cron: Check cron logs:
grep CRON /var/log/syslog - Ensure Python path is absolute in cron jobs
Real-World ROI
Here's the actual time savings from automating weekly reports:
Before automation (per week):
- Manual data collection: 30 min
- Analysis and calculations: 25 min
- Chart creation: 20 min
- Email formatting: 15 min
- Distribution and follow-up: 10 min
- Total: 100 minutes per week
After automation (per week):
- Review automated report: 5 min
- Address questions: 10 min
- Total: 15 minutes per week
Time saved: 85 minutes per week = 74 hours per year
At $75/hour average salary, that's $5,550 in reclaimed time annually.
Frequently Asked Questions
Can I use this with Google Workspace (Gmail for business)? Yes, but you need to create an App Password in your Google Account settings. Regular passwords won't work with SMTP for security reasons.
How do I handle multiple reports with different templates?
Create multiple config dictionaries in config.py and separate generator classes. Or use a template engine like Jinja2 to dynamically generate HTML from templates.
Can I send PDF attachments instead of HTML emails?
Yes, use matplotlib.backends.backend_pdf.PdfPages to save charts to PDF, then attach using MIMEApplication. PDF attachments work better for external stakeholders who might have email clients that don't render HTML well.
What if my data source is an API, not a database?
Replace the load_data() method with API calls using the requests library. Parse JSON responses into pandas DataFrames.
How do I test this without spamming everyone?
Temporarily change config.py recipients to only include your own email address during testing. Or create a separate config_test.py for development.
Related articles: Automate Email Sending with Python, Build Dynamic Excel Dashboards
Sponsored Content
Interested in advertising? Reach automation professionals through our platform.
